524 research outputs found

    Design study for a magnetically supported reaction wheel

    Get PDF
    Results are described of a study program in which the characteristics of a magnetically supported reaction wheel are defined. Tradeoff analyses are presented for the principal components, which are then combined in several reaction wheel design concepts. A preliminary layout of the preferred configuration is presented along with calculated design and performance parameters. Recommendations are made for a prototype development program

    High temperature cavity polaritons in epitaxial Er_2O_3 on silicon

    Get PDF
    Cavity polaritons around two Er^(3+) optical transitions are observed in microdisk resonators fabricated from epitaxial Er_2O_3 on Si(111). Using a pump-probe method, spectral anticrossings and linewidth averaging of the polariton modes are measured in the cavity transmission and luminescence at temperatures above 361 K

    Costs and benefits of provocation in bacterial warfare.

    Get PDF
    Competition in animals involves a wide variety of aggressive behaviors. One of the most sophisticated strategies for a focal actor is to provoke a competitor into uncontrolled aggression toward other competitors. Like animals, bacteria rely on a broad spectrum of molecular weapons, some of which provoke potential rivals by triggering retaliation. While bacterial provocation is well documented, its potential adaptive value has received little attention. Here, we examine the costs and benefits of provocation using mathematical modeling and experiments with <i>Escherichia coli</i> strains encoding colicin toxins. We show that provocation is typically costly in one-to-one encounters because a provoking strain receives a strong reciprocal attack compared with nonprovoking strains. By contrast, provocation can be strongly beneficial in communities including more than two toxin-producing strains, especially when the provoker is shielded from, or resistant to, its opponents' toxins. In these scenarios, we demonstrate that the benefit of provocation derives from a "divide-and-conquer" effect by which aggression-provoking toxin producers force their competitors into increased reciprocal aggression, leading to their cross-elimination. Furthermore, we show that this effect can be mimicked by using antibiotics that promote warfare among strains in a bacterial community, highlighting the potential of provocation as an antimicrobial approach

    Preparation of Acetylated Guar Gum – Unsaturated Polyester Composites & Effect of Water on Their Properties

    Get PDF
    Guar gum has seen extensive use in blends, however, its application as a filler in thermoset composites has as yet not been investigated. The effect of the addition of guar gum and its acetyl derivatives on the kinetics of water diffusion in unsaturated polyester composites was studied. The effect of water on the mechanical properties of the composites was studied with respect to the nature of filler, filler concentration and time of immersion. All the mechanical properties were observed to decrease on exposure to water. Further, it was observed that acetylated guar gum, with a degree of substitution of 0.21, showed the best mechanical properties, surpassing the other filled composites and that of the pure unsaturated polyester. Thus, acetylated guar gum showed promise as eco-friendly filler in composite formulation

    Growth, processing, and optical properties of epitaxial Er_2O_3 on silicon

    Get PDF
    Erbium-doped materials have been investigated for generating and amplifying light in low-power chip-scale optical networks on silicon, but several effects limit their performance in dense microphotonic applications. Stoichiometric ionic crystals are a potential alternative that achieve an Er^(3+) density 100× greater. We report the growth, processing, material characterization, and optical properties of single-crystal Er_2O_3 epitaxially grown on silicon. A peak Er^(3+) resonant absorption of 364 dB/cm at 1535nm with minimal background loss places a high limit on potential gain. Using high-quality microdisk resonators, we conduct thorough C/L-band radiative efficiency and lifetime measurements and observe strong upconverted luminescence near 550 and 670 nm

    GRADES: Gradient descent for similarity caching

    Get PDF
    A similarity cache can reply to a query for an object with similar objects stored locally. In some applications of similarity caches, queries and objects are naturally represented as points in a continuous space. Examples include 360° videos where user's head orientation - expressed in spherical coordinates - determines what part of the video needs to be retrieved, and recommendation systems where the objects are embedded in a finite-dimensional space with a distance metric to capture content dissimilarity. Existing similarity caching policies are simple modifications of classic policies like LRU, LFU, and qLRU and ignore the continuous nature of the space where objects are embedded. In this paper, we propose Grades, a new similarity caching policy that uses gradient descent to navigate the continuous space and find the optimal objects to store in the cache. We provide theoretical convergence guarantees and show Grades increases the similarity of the objects served by the cache in both applications mentioned above

    Polymyxin and lipopeptide antibiotics: membrane- targeting drugs of last resort

    Get PDF
    The polymyxin and lipopeptide classes of antibiotics are membrane-targeting drugs of last resort used to treat infections caused by multi-drug-resistant pathogens. Despite similar structures, these two antibiotic classes have distinct modes of action and clinical uses. The polymyxins target lipopolysaccharide in the membranes of most Gram-negative species and are often used to treat infections caused by carbapenem-resistant species such as Escherichia coli , Acinetobacter baumannii and Pseudomonas aeruginosa . By contrast, the lipopeptide daptomycin requires membrane phosphatidylglycerol for activity and is only used to treat infections caused by drug-resistant Gram-positive bacteria such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. However, despite having distinct targets, both antibiotic classes cause membrane disruption, are potently bactericidal in vitro and share similarities in resistance mechanisms. Furthermore, there are concerns about the efficacy of these antibiotics, and there is increasing interest in using both polymyxins and daptomycin in combination therapies to improve patient outcomes. In this review article, we will explore what is known about these distinct but structurally similar classes of antibiotics, discuss recent advances in the field and highlight remaining gaps in our knowledge

    GRADES: Gradient descent for similarity caching

    Get PDF
    International audienceA similarity cache can reply to a query for an object with similar objects stored locally. In some applications of similarity caches, queries and objects are naturally represented as points in a continuous space. Examples include 360° videos where user's head orientation-expressed in spherical coordinates determines what part of the video needs to be retrieved, and recommendation systems where the objects are embedded in a finite-dimensional space with a distance metric to capture content dissimilarity. Existing similarity caching policies are simple modifications of classic policies like LRU, LFU, and qLRU and ignore the continuous nature of the space where objects are embedded. In this paper, we propose GRADES, a new similarity caching policy that uses gradient descent to navigate the continuous space and find the optimal objects to store in the cache. We provide theoretical convergence guarantees and show GRADES increases the similarity of the objects served by the cache in both applications mentioned above

    Scalable wavelength-converting crossbar switches

    Get PDF
    Cataloged from PDF version of article.We report scalable low-power wavelength-converting Crossbar switches that monolithically integrate two-dimensional compact arrays of surface-normal photodiodes with quantum-well waveguide modulators. We demonstrate proof-of-concept, electrically reconfigurable 2 x 2 crossbars that perform unconstrained wavelength conversion across 35 nm in the C-band (1530-1565 nm), using only <4.3-mW absorbed input optical power, and with 10-dB extinction ratio at 1.25 Gb/s. Such wavelength-converting crossbars provide complete flexibility to selectively convert any of the input wavelengths to any of the output wavelengths at high data bit rates in telecommunication, with the input and output wavelengths being arbitrarily chosen within the C-band
    corecore